

Copyright 2020, 2021

DISCLAIMER

While every effort has been made to ensure the accuracy of this document, Raven Industries assumes no responsibility for omissions and errors. Nor is any liability assumed for damages resulting from the use of information contained herein.

Raven Industries shall not be responsible or liable for incidental or consequential damages or a loss of anticipated benefits or profits, work stoppage or loss, or impairment of data arising out of the use, or inability to use, this system or any of its components. Raven Industries shall not be held responsible for any modifications or repairs made outside our facilities, nor damages resulting from inadequate maintenance of this system.

As with all wireless and satellite signals, several factors may affect the availability and accuracy of wireless and satellite navigation and correction services (e.g. GPS, GNSS, SBAS, etc.). Therefore, Raven Industries cannot guarantee the accuracy, integrity, continuity, or availability of these services and cannot guarantee the ability to use Raven systems, or products used as components of systems, which rely upon the reception of these signals or availability of these services. Raven Industries accepts no responsibility for the use of any of these signals or services for other than the stated purpose.

RAVEN

Chapter 1 Safety	Important Information	
	nd Control Consoles	
	Safety	
5	safety	
Touch Scr	een	2
	tions and Best Practices	
Hose Rou	ting	3
Chapter 2	Introduction	5
Installation		5
Recomme	ndations	5
Point of Refer	ence	5
Updates		6
Chapter 3	AutoBoom XRT Home Screen and Operation	7
UT Operation		7
Home Screen		8
XRT Home Sc	reen Operation	8
	<i>v</i> itch	
5	v Settings	
•	ight Settings	
-	nsory Sensitivity	
0 51	uto	
	ading	
	RT Operation on Raven Operating Software (ROS)	
	n Operation	
	eration	
AutoFold	Out to Spray Position	13
AutoFold	In to Transport Position	13
Chapter 4	Calibration	15
First Time Cor	nfiguration	15
Chapter 5	Settings	23
Machine Setti	ngs	23
	nfigurations	
Display Co	onfiguration	24
•	nsor Configuration	
REM Upda		
	onfigurations	
Boom Tur Fold Tunir	ning	
Calibratio	-	

Alarm Settings	 40
Feature Unlock Codes	 41

Chapter 6 AutoBoom XRT Advanced Tuning	43
Preparation	43
Sensor Dimensions	43
Boom Angle Sensor	43
Hydraulic Oil	43
Base Control Effort Calibration	43
Target Control Effort Test	43
Boom Speed to Control Effort Scale	44
Down Speed Ratio	45
Boom Gains	47
Proportional Gain	47
Integral Gain	47
Derivative Gain	
System Gain	47

Chapter 7	Diagnostics and Troubleshooting	49
System Informa	ation	
Boom Outp	puts	
Fold Outpu	uts	
Boom Read	dings	50
	nformation	
	ols	
	r Readings	
	Software (ABM)	
-	nsor Readings	
	eadings	
•	urs	
	Itages	
	amper Outputs	
-	Itrol Effort Test	
0	ocity Test	
0	ition Test	
	ght Test	
	npensation Test	
	amper Test	
	uble Codes (DTCs)	
0		
	les	
	es	
5	ary	
lotais		65

SAFETY

NOTICE

Follow the operation and safety instructions included with the implement and/or controller and read this manual carefully before installing or operating this Raven system.

- Follow all safety information presented within this manual. Review implement operation with your local dealer.
- Contact a local Raven dealer for assistance with any portion of the installation, service, or operation of Raven equipment.
- Follow all safety labels affixed to system components. Be sure to keep safety labels in good condition and replace any missing or damaged labels. Contact a local Raven dealer to obtain replacements for safety labels.

Observe the following safety measures when operating the implement after installing this Raven system:

- Do not operate this Raven system or any agricultural equipment while under the influence of alcohol or an illegal substance.
- Be alert and aware of surroundings and remain in the operator seat at all times when operating this Raven system.
 - Do not operate the implement on any public road with this Raven system enabled.
 - Disable this Raven system before exiting the operator seat.
 - Determine and remain a safe working distance from obstacles and bystanders. The operator is responsible for disabling the system when a safe working distance has diminished.
 - Disable this Raven system prior to starting any maintenance work on the implement or components of this Raven system.
- Do not attempt to modify or lengthen any of the system control cables. Extension cables are available from a local Raven dealer.

DISPLAYS AND CONTROL CONSOLES

- If the display will not be used for an extended period, it is best to remove the display from the machine and store it in a climate controlled environment. This may help to extend the service life of electronic components.
- To prevent theft, secure the display and GPS antenna when leaving the machine unattended.

WARNING

HYDRAULIC SAFETY

When installing or servicing a hydraulic system or hydraulic components, be aware that hydraulic fluid may be extremely hot and under high pressure. Caution must be exercised.

- Always wear appropriate personal protective equipment when installing or servicing hydraulic systems.
- · Never attempt to open or work on a hydraulic system with the implement running.
- Any work performed on the hydraulic system must be done in accordance with the machine manufacturer's approved maintenance instructions.
- Care should always be taken when servicing or opening a system that has been pressurized.
- The implement or machine must remain stationary and switched off with booms or implement sections unfolded and supported during installation or maintenance.
- Take precautions to prevent foreign material or contaminants from being introduced into the implement hydraulic system. Contaminants that are able to bypass the hydraulic filtration system will reduce performance and may damage hydraulic components.
- Stand clear of the implement when starting the system for the first time after installing or servicing hydraulic components in case a hose has not been properly connected or tightened.

ELECTRICAL SAFETY

- Always verify that power leads are connected to the correct polarity as marked. Reversing the power leads could cause severe damage to the Raven system or other components.
- To prevent personal injury or fire, replace defective or blown fuses with only fuses of the same type and amperage.
- Do not connect the power leads to the battery until all system components are mounted and all electrical connections are completed.
- Always start the machine before initializing this Raven system to prevent power surges or peak voltage.
- To avoid tripping and entanglement hazards, route cables and harnesses away from walkways, steps, grab bars, and other areas used by the operator or service personnel when operating or servicing the equipment.

TOUCH SCREEN

- Only touch the touch-screen with your finger or by using a special touch-screen stylus/pen. Operating the touch-screen with sharp objects may cause permanent damage to the screen.
- Only clean the screen using a damp cloth. Never use caustic or other aggressive substances.

RECOMMENDATIONS AND BEST PRACTICES

HOSE ROUTING

The word "hose" is used to describe any flexible, fluid carrying components. Use the following guidelines and recommendations when connecting and routing hoses while installing or maintaining this Raven system:

- Leave protective caps/covers over hose ends until connecting the end into the hydraulic system to help prevent contaminants from entering the system.
- Follow existing hose runs already routed on the implement as much as possible. Proper hose routing should:
 - Secure hoses and prevent hoses from hanging below the implement.
 - Provide sufficient clearance from moving components and operational zones around shafts; universal joints and suspension components; pulleys, gears, belts, and chains; moving linkages, cylinders, articulation joints, etc.
 - Protect hoses from field debris and surrounding hazards (e.g. tree limbs, fence posts, crop stubble, dirt clumps or rocks that may fall or be thrown by the implement).
 - Protect hoses from sharp bends, twisting, or flexing over short distances and normal implement operation.
 - Ensure sufficient length for free movement of the implement during normal operation and prevent pulling, pinching, catching, or rubbing, especially in articulation and pivot points. Clamp hoses securely to force controlled movement of the hose.
 - Avoid abrasive surfaces and sharp edges such as sheared or flame cut corners, fastener threads or cap screw heads, hose clamp ends, etc.
 - Avoid areas where the operator or service personnel might step or use as a grab bar.
- Do not connect, affix, or allow hoses to come into contact with components with high vibration forces, hot surfaces, or components carrying hot fluids beyond the temperature rating of hose components.
 - Hoses should be protected or shielded if routing requires the hose to be exposed to conditions beyond hose component specifications.
- Avoid routing hoses in areas where damage may occur due to build up of material (e.g. dirt, mud, snow, ice, etc.).

Raven's latest advancement in boom controls is AutoBoom[®] XRT. Industry-leading radar sensor technology uses simultaneous ground and canopy detection to maintain optimal spray height for maximum product efficacy. Pressure-based control allow for smooth movement and quicker reaction time while center rack stability technology with optional dampers gives the operator complete control, maximizing boom life.

INSTALLATION

\sim	WARNING
	Carefully read and follow all safety requirements and precautions contained in this manual and the machine-specific Installation Manual. Failure to follow safety instructions may lead to equipment damage, personal injury, or death.

RECOMMENDATIONS

Before installing the AutoBoom XRT system, park the machine where the ground is level, clean, and dry. Bleed pressure from the hydraulic system and leave the machine turned off for the duration of the installation process.

During the installation process, follow good safety practices. Be sure to carefully read the instructions in this manual as you complete the installation process.

Raven Industries recommends the following best practices when installing or operating the XRT system for the first time, at the start of the season, or when moving the AutoBoom XRT system to another machine:

- Verify that the machine's hydraulic system is using fresh oil and that the filters have been recently changed
- Ensure there are no issues with the machine's hydraulic system (e.g., pump issues, faulty hydraulic motors, fine metal deposits in the hydraulic hoses, etc.).

POINT OF REFERENCE

The instructions in this manual assume that you are standing behind the machine, looking toward the cab.

UPDATES

Software and manual updates are available on the Raven Applied Technology website.

https://portal.ravenprecision.com/

Sign up for email alerts, and you will be automatically notified when updates for your Raven products are available on the website!

At Raven Industries, we strive to make your experience with our products as rewarding as possible. One way to improve this experience is to provide us with feedback on this manual.

Your feedback will help shape the future of our product documentation and the overall service we provide. We appreciate the opportunity to see ourselves as our customers see us and are eager to gather ideas on how we have been helping or how we can do better.

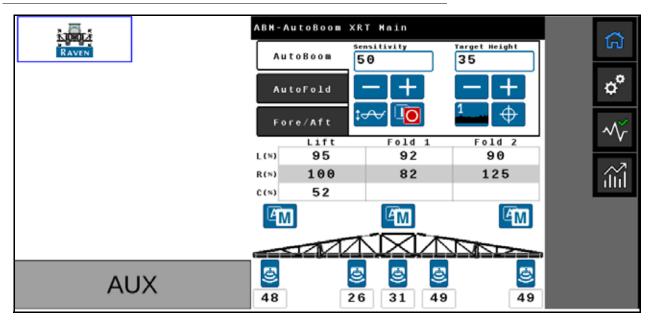
To serve you best, please send an email with the following information to

techwriting@ravenind.com

-Case IH AutoBoom XRT Calibration & Operation Manual -016-0235-002 Rev. B Any comments or foodback (include chapter or page numbers if applical

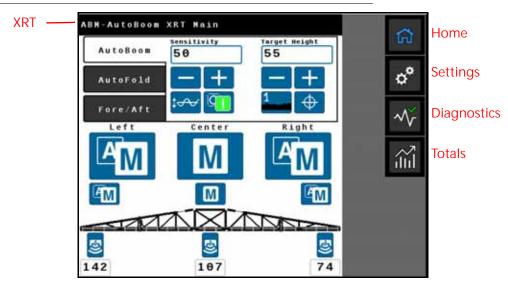
-Any comments or feedback (include chapter or page numbers if applicable). -Let us know how long have you been using this or other Raven products.

We will not share your email or any information you provide with anyone else. Your feedback is valued and extremely important to us.


Thank you for your time.

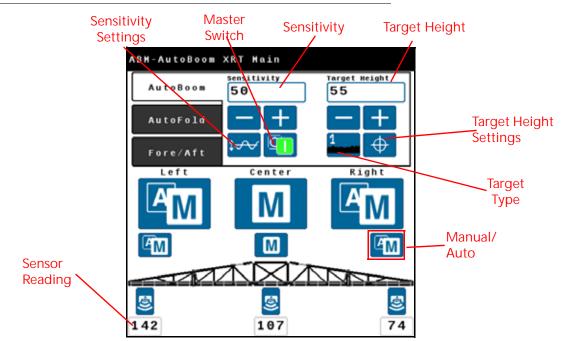
UT OPERATION

Pressing the UT widget on the run screen will open the UT interface. From this screen it is possible to adjust machine settings, view diagnostic information, and adjust Sensitivity and Target Height.


FIGURE 1. UT Run Screen Interface

HOME SCREEN

AutoBoom XRT is a UT based application. To access AutoBoom XRT screens:


- 1. Press the UT icon.
 - FIGURE 2. Home Screen

2. Select the XRT working set icon.

XRT HOME SCREEN OPERATION

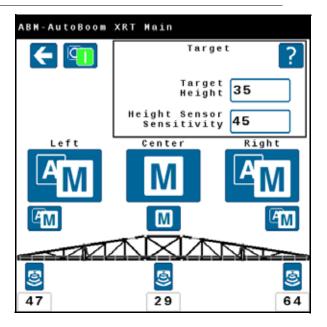
FIGURE 3. XRT Home Screen

MASTER SWITCH

Press the Master Switch to toggle between enabled and disabled states. If enabled, the system is ready to transition to auto mode. If disabled, auto mode is locked out.

NOTE: The Master Switch status will automatically toggle On after completing an AutoFold Out cycle to the spray position. The status will automatically toggle to Off when AutoFold begins to fold booms to the transport position. Without AutoFold, the status will automatically toggle to Off when the booms are near the folded position.

SENSITIVITY SETTINGS


Use the Sensitivity Settings buttons to increase or decrease the system sensitivity. Increasing the sensitivity will increase how quickly the boom responds to the sensor target. Increasing the sensitivity too high may result in unnecessary or excessive movement. Decreasing the sensitivity will result in less boom movement but will make the booms slower to respond to an error in boom height.

TARGET HEIGHT SETTINGS

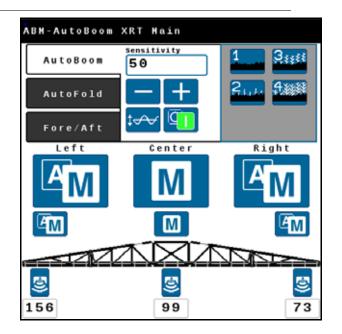
_	
	-
	ഫ
	T

Press the Target Height button to set the distance from the boom to the target. This screen also allows the user to select the Height Sensor Sensitivity. This information can also be changed on the *XRT Home* screen using the +/- buttons or typing the value into the Target Height field.

FIGURE 4. Target Height

HEIGHT SENSORY SENSITIVITY

Height Sensor Sensitivity can be adjusted by typing the value into the Height Sensory Sensitivity field. This value affects the ability of the radar sensor to distinguish between spray, crop, and ground.


NOTE: A Height Sensory Sensitivity range of 1-20 is ideal for reduced canopy detection or high spray drift suppression.

A Height Sensory Sensitivity range of 20-100 allows the sensor to be more sensitive in detecting a canopy, however, as the Height Sensory Sensitivity value increases, drift suppression decreases.

The Height Sensory Sensitivity value is set to 45 by default.

TARGET TYPE

FIGURE 5. Target Type

Press the Target Type to select between the desired measurement target:

- Ground **Constant**: This target type will use the ground signal as the primary target, but will use the canopy signal if it has a higher confidence level.
- Ground Locked
 This target type will only use the ground signal as a target.
- Canopy :: This target type will use the canopy signal as the primary target, but will use the ground signal if it has a higher confidence level.
- Canopy Locked E: This target type will only use the canopy signal as a target.

MANUAL/AUTO

Depending on the machine configuration, there can be up to three Manual/Auto toggle buttons. Each Manual/ Auto toggle button controls a boom (left/right) or the center rack. If the center rack only displays a Manual button, center rack control is not enabled. Pressing this button will still transition the left and right booms into

Auto mode. When in Auto and the XRT system will continually move the boom position to reach the target position. When in Manual mode with the Master Switch on, the system is ready to engage. Another way to switch from Manual/Auto is to press on the desired boom section.

SENSOR READING

Sensor Height displays the height for each of the sensors. The number of sensors displayed will match the number of sensors on the machine. The table below describes the Sensor Height reading in more detail.

TABLE 1. Sensor Reading States

Image	Status	Description
5	Sensor Working/Reading	Indicates the sensor is functioning properly and reading the desired target.
\$	Sensor Not Reading/ Malfunctioning	If there is an X through the sensor, the sensor is not reading a target or is malfunctioning.
ren	Sensor Offline/Disabled	If there isn't a number below the sensor location, the sensor may be offline or was disabled by the user.

AUTOBOOM XRT OPERATION ON RAVEN OPERATING SOFTWARE (ROS)

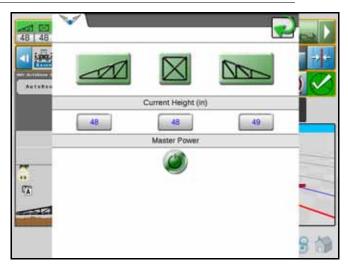

RUN SCREEN OPERATION

FIGURE 6. Run Screen

- 1. Press the desired boom on the XRT widget to enable or disable AutoBoom XRT.
- 2. Press and hold the desired widget to open additional boom information. Pressing and holding also allows the user to turn on or off the master switch.

FIGURE 7. XRT Widget Long Hold

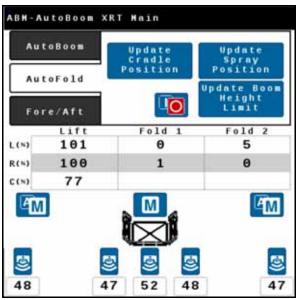
AUTOFOLD OPERATION

NOTE: Ensure the machine propulsion lever is in the neutral position. AutoFold is disabled if the machine propulsion lever is not in neutral.

AUTOFOLD OUT TO SPRAY POSITION

- 1. Press and hold the AutoFold switch in the UP position.
- NOTE: Release the AutoFold switch at any time to abort the AutoFold cycle.

FIGURE 8. AutoFold Button

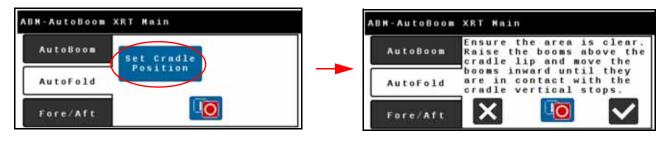

2. Release the AutoFold switch after the boom has reached the spray position.

AUTOFOLD IN TO TRANSPORT POSITION

1. Press and hold the AutoFold switch in the DOWN position.

NOTE: Release the AutoFold switch at any time to abort the AutoFold cycle.

- 2. Release the AutoFold switch after the boom has reached the transport position.
 - FIGURE 9. AutoFold Operation Main Screen



NOTE: It is not necessary to view the *AutoFold Operation Main* screen to perform automatic folding or unfolding functions.

Update Boom Height Limit. Adjusts the boom height limit above the cradle to prevent contacting the mirrors.

- Update Spray Position. Saves the current boom tilt position as the new target for folding OUT operation. This setting affects tilt only. The target positions for inner/outer fold joints and the center rack position are not updated.
- Update Cradle Position. Recalibrates the boom tilt cradle position based on current boom position. Boom should be resting in cradle. The target positions for inner/outer fold joints and the center rack position are not updated.

FIGURE 10. Set Cradle Position

CHAPTER CALIBRATION

4

FIRST TIME CONFIGURATION

NOTE: Depending upon configuration settings and installed unlocks, the following steps may vary.

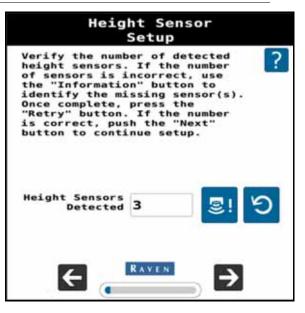
After installing the XRT system:

- 1. Park the machine on a level surface.
- 2. Machine Make, Machine Model, and Machine Configuration will automatically populate into the three fields.

FIGURE 1. Machine Selection

Machine Setup	
Please select a machine m model, and configuration. complete, press the "Next to continue setup.	Once :
Machine Make	
Hachine Hake	
*Case IH	Ξ
+	Ξ
*Case IH	Ξ
*Case IH Machine Model	E

3. Press Next.


4. Verify the number of height sensors installed on the booms and center rack. This will be three, five, or seven sensors depending upon the number of sensors installed.

If there are no Height Sensors Detected, press 🔛 to re-detect the

C

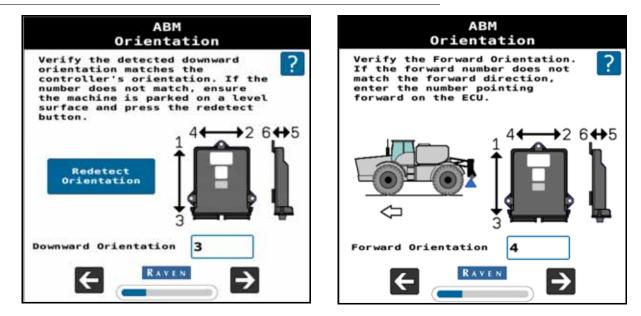
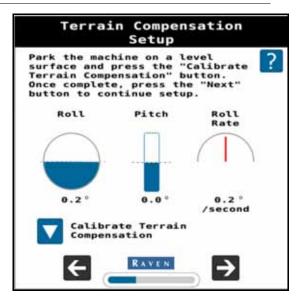
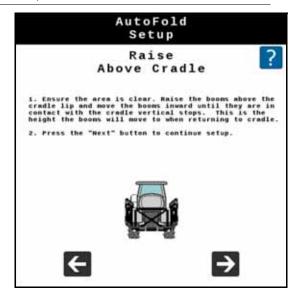

to re-detect the number of sensors.

FIGURE 2. Height Sensors Detected

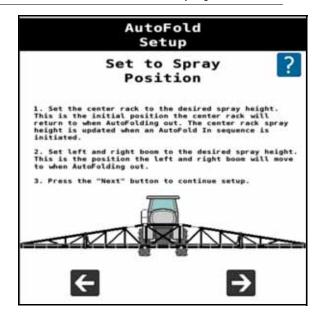
- 5. Press Next.
- NOTE: If the AutoFold feature is unlocked, AutoFold will be calibrated at this time. Refer to the *AutoFold Calibration* section on page 36 for assistance with calibrating the AutoFold system. Once the AutoFold calibration is complete, proceed with step 6 to continue the AutoBoom XRT calibration.
- 6. Verify the orientation of the ABM (ECU) on the machine matches the downward/forward orientation of the controller on the *ABM Orientation* page.
- NOTE: Many of the next screens will populate with default settings based on the machine configuration selected earlier.


FIGURE 3. ABM Orientation


7. If required, press the Redetect Orientation button to redetect the orientation of the ABM on the *Downward Orientation* page.

NOTE: The downward and forward orientations can be entered in the appropriate fields.

- 8. Press Next.
- 9. Verify the machine is parked on a level surface.
 - FIGURE 4. Terrain Compensation Setup



- 10. Press Calibrate Terrain Compensation.
- 11. After terrain calibration compensation is complete, press Next.
- NOTE: If the AutoFold feature is unlocked and calibrated, the following steps will have been completed during the AutoFold calibration. Skip to step 17 to continue the calibration process.
- 12. Fold the boom in so the booms are stored in the transport position.
- 13. Touch the Next button to continue fold calibration.
- 14. Raise the booms above the cradle lip and inward to contact vertical stops. Booms will control to the set point when cradling.
 - FIGURE 5. AutoBoom Fold Setup Raise Above Cradle

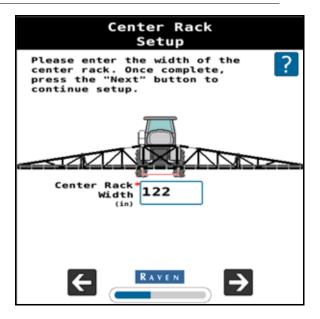

- 15. Move the booms to a typical spray position. The center rack should be well below the travel stops and the inner booms unfolded.
- 16. Touch the Next button to continue the fold calibration.

FIGURE 6. Vertical Center Sensor Calibration - Set to Spray Position

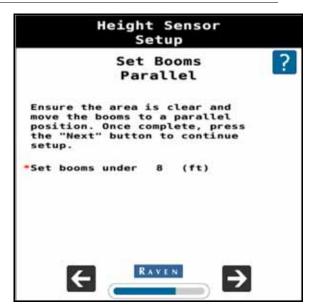
17. Enter the Center Rack Width. The center rack width is measured from the left boom pivot point to the right boom pivot point. The pivot point is where the boom rotates as it is raised/lowered. The pivot point is generally a horizontal steel pin.

FIGURE 7. Center Rack Setup

- 18. Press Next.
- 19. Enter the Z offset from the bottom of the spray tips to the bottom of the sensor lens for the identified sensor into the Offset Z field.
- 20. Enter the X offset from the boom pivot point (not the machine center line) to the sensor mounting location into the Offset X field.

FIGURE 8. Height Sensor Setup

Height Sensor Setup	
Enter the offsets for each sensor. Once complete, press the "Next" button to continue setup.	?
Sensor Position Mount Below = Offset Z* 2 Offset X* 454	


21. Press Next.

22. Repeat step 19 and step 21 for the remaining sensors.

23. Set the booms parallel and under 8 ft. [2.4 m] from the ground.

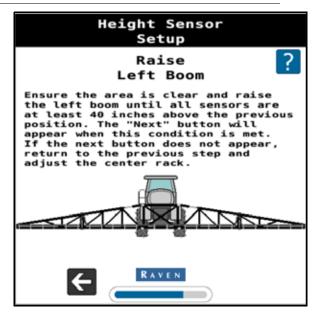
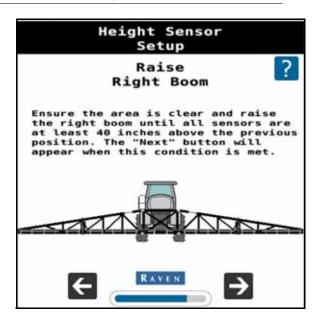

24. Press Next.

FIGURE 9. Height Sensor Setup - Set Booms Parallel

25. Raise the left boom until there is at least a 40 in. [101.6 cm] change in height. 26. Press Next.


FIGURE 10. Height Sensor Setup - Raise Left Boom

27. Raise the right boom until there is at least a 40 in. [101.6 cm] change in height.

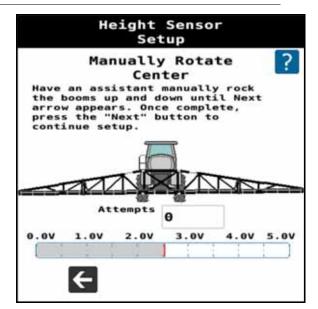
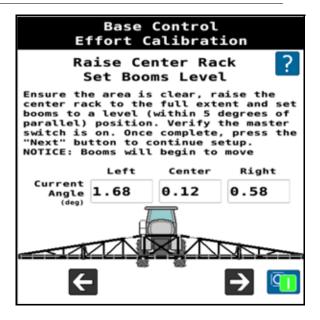

28. Press Next.

FIGURE 11. Height Sensor Setup - Raise Right Boom

- 29. If an IMU (Inertial Measurement Unit) is installed on the machine, skip to step 32.
- 30. Lower and level the booms.
- 31. Have an assistant manually rock the boom up and down until the Next arrow appears. The Next arrow will only appear when the voltage is more than 0.25 V apart.


FIGURE 12. Center Rack Rotation

32. Press Next.Raise the center rack and set the booms level.

NOTE: The boom will move on its own for the next few steps. Verify nobody is standing near the booms.

FIGURE 13. Base Control Effort Calibration

- 33. Press Next. The system will perform an automatic calibration sequence to determine the duty cycle required to keep the boom stationary.
- 34. If prompted, manually raise or lower booms and press Next to continue calibration.
- 35. Review the information on the Height Sensor Setup page.
- 36. Press Next.
- 37. Review the information on the System Summary page.
- 38. Press Next.
- 39. The XRT Home screen will be displayed.
- NOTE: If features are not visible on the *XRT Home* screen, it means those features are locked. To unlock these features, follow the directions in Chapter 6, *Feature Unlock Codes*.

CHAPTER SETTINGS 5

MACHINE SETTINGS

FIGURE 1. Machine Settings

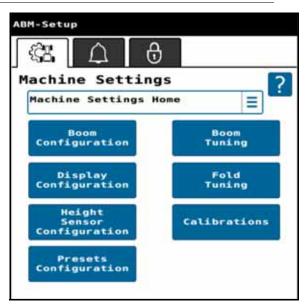


FIGURE 2. Machine Settings Drop-down Menu

Nachine Settings Home	
Bonm Configuration	
Room Tuning	
Calibrations	
Display Configuration	
Fold Tuning	
Height Sensor Configuration	
Height Sensor Updates	
Presets Configuration	
INU Updates	
REB Updates	

BOOM CONFIGURATIONS

The *Boom Configuration* window allows the user to adjust the Center Rack Width, enable or disable Center Rack Control, and enable or disable the variable damper system. If the Center Rack Control checkbox is blank, the system will not automatically raise or lower the center rack based upon height sensor readings.

?

ABM-Setup Machine Settings Boom Configuration

Center Rack Control

FIGURE 3. Boom Configuration

DISPLAY CONFIGURATION

The *Display Configuration* window allows the user to create a customized view of the AutoBoom XRT home screen. This may be useful for diagnostics and troubleshooting. To configure the display:

1. Select Display Configuration from the Machine Settings tab. A window will open that represents the editable sections of the *AutoBoom XRT Home* screen.

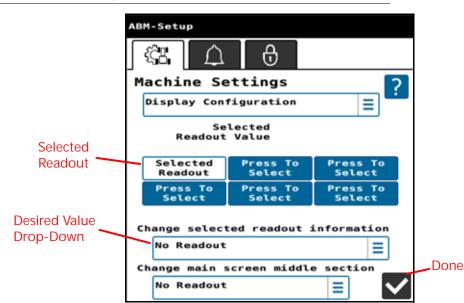


FIGURE 4. Display Configuration

- 2. Select the desired value for that location from the drop-down at the bottom of the page.
- 3. Select the Readout drop-down window and select Advanced Options

NOTE: These options can also be edited from the Home page by selecting the readout box to be updated.

- 4. Press Selected Readout in the desired area.
- 5. Select the AutoFold Percentages option at the bottom of the page to view the current joint fold positions instead of the AutoBoom sensor readouts on the *AutoBoom XRT Main* screen.

FIGURE 5. AutoFold Percentage Position Display

_	Lift	Fold 1	Fold 2	Fold 3
L (%)	104	99	99	99
R (%)	94	100	100	100
C (%)	61			

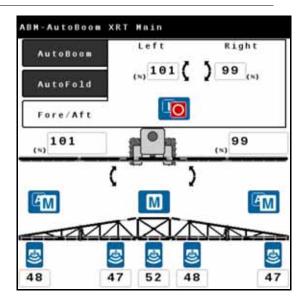

6. Select the Enable/Disable Readout option at the bottom of the page to replace sensor readings on the *AutoBoom XRT Main* screen with large Auto/Manual toggle buttons. This can help the operator more easily confirm whether a boom fold section is engaged or not during AutoBoom operation.

FIGURE 6. Toggle Auto/Manual

7. Select the Fore/Aft option to replace the middle section of the main screen with boom main fold position information.

FIGURE 7. Fore/Aft

8. After all the Selected Readouts are configured, press Done.

HEIGHT SENSOR CONFIGURATION

The *Height Sensor Configuration* window allows the user to change the sensor Offset, review software information, or select Sensor Enable. This page also allows the user to swap the sensors by pressing the Swap Sensors button and update sensor software by touching the Height Sensor Update button.

Offset X is the horizontal distance from the pivot point of that boom (near the Left or Right Shoulder). Offset Z is the vertical distance between the spray tip and the lens of the height sensor. If the sensor is below the spray tip, the Mount field should be set to 'Below.'

FIGURE 8. Height Sensor Configuration

	ABM-Setup
	Machine Settings
	MAX XIANN
	<u>s</u>
	Serial Number 17933 = Offset Z (in) 2
Height Sensor Update	Current 0 <t< td=""></t<>

Select the different sensors shown on the sprayer boom to modify that sensors configuration.

HEIGHT SENSOR UPDATES

The *Height Sensor Updates* window allows the user to update software on the height sensors. The sensors may be updated individually by selecting each sensor and pressing Reprogram Selected. Alternatively, all sensors my be programmed by pressing Reprogram All. Height sensor software is bundled with the XRT ABM software. No external file is needed for updating height sensor software.

FIGURE 9. Height Sensor Updates

ABM-Setup		
KA L) 🕀	
Machine S	Settings	2
Height Sen	sor Updates	
	π X/	
S	9	(
Serial Number	17933 📃	Reprogram Selected
Current Software	1.46.0	Reprogram All
New Software	1.46.0	
		\checkmark

SWAP SENSORS

Press Swap Sensors to open the *Height Sensor Swap* window. After physically swapping sensors on the machine, select the two sensors that were swapped. Once both are selected, touch the Swap button.

н	eight Sensor Swap	
	sensors by clicking use the below drop	?
<u></u>		3
Height Sensor 1	= 1]
Height Sensor 2	Set Sensor 1	
	Swap	
×	RAVEN	

FIGURE 10. Swap Sensors

REM UPDATES

The REM software is included with the ABM software and updated through the object pool. REM Updates window allows the user to update software. If an update is available, select reprogram. No external file is needed for updating REM.

FIGURE 11. REM Update

ABM - Setup	
Machine Settings	2
REM Updates	
Current Software 20.1.0.4	Reprogram
Software 21.2.0.1	REŇ
	\checkmark

PRESETS CONFIGURATIONS

The *Presets Configuration* window allows the user to select the desired Preset Mode, select the number of Taps to enable the mode, and select the Joysticks checkbox if using the joystick will enable the mode.

Boom control switches can be configured to perform certain functions depending on the number of joystick presses. For example, the user can configure the system to raise the boom to a higher position (e.g. for end of row turnaround) when the switch on the joystick is quickly tapped up three times. To configure presets:

- 1. Select Preset Configuration from the Machine Settings tab.
- 2. Select the desired boom. Each boom will have its own settings from each preset selected.

FIGURE 12. Preset Configuration

ABM-Setup	
	6
Machine Setting	js ?
Presets Configurat	
Preset Mode	
Joysticks	Taps 1 ≡ ✓

- 3. Select the desired Preset Mode.
 - a. Spray Mode Standard XRT operation mode
 - b. Preset 1 User customizable mode
 - c. Preset 2 User customizable mode
- 4. Select the Trigger Method.
 - a. There is one trigger method per Preset mode.
- 5. Select the Control To option.
 - a. Height The preset will control to a user selected height.
 - b. Angle The preset will control to a user selected angle.
 - c. Spray Height The preset will control to the height in the Spray mode.
 - d. Transport The preset will control to a max height and disable the wing when it reaches the height.
- 6. If desired, select the Joysticks checkbox. Selecting Joystick enables or disables joystick shortcuts for mode changing.
- 7. To activate the preset, press the joystick button in the direction selected as the trigger type and press it the number of times selected as number of taps.

BOOM TUNING

Boom tuning displays boom settings based on machine configuration (Make, Model, Boom Width) options selected during initial calibration. If needed, the user can adjust Speed to Duty Cycle, Down Speed Ratio, Base Duty Cycle, Height Deadband, and PID gain settings. Use the Boom Gains and Boom Speed Tuning buttons to toggle between the two screens.

NOTE: Pressing the Reset Tuning or Reset Gains buttons only reset the values displayed on that page. The values are reset to defaults specific to your machine Make, Model, and Boom Width.

Refer to Chapter 6, AutoBoom XRT Advanced Tuning for additional information on these settings.

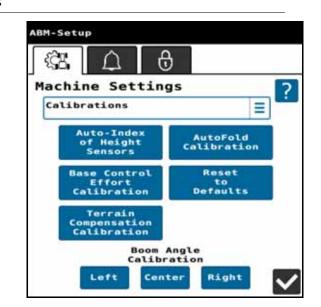
FIGURE 13. Boom Tuning Screens

ABM-Setup			
Kî l	Ĵ	Ð	
Machine	Setti	ngs	2
Boom Tuni	ng		
	Left	Center	Right
Speed to Duty Cycle	0.012	2 5.500	0.012
Down Speed Ratio	0.600	1.350	0.600
Base Duty Cycle	37.00	50.00	37.00
Height Deadband		6	
			_
Boom Gains		Reset Tuning	

FOLD TUNING

Fold Tuning displays fold settings based on machine configuration (Make, Model, Boom Width) options selected during initial calibration. If needed, the user can adjust Sensitivity, Base Duty Cycle, and the Min/Max values.

- 1. Sensitivity can be set independently for Up/In and Down/Out. Higher sensitivities correspond to faster movements during manual boom movement.
- 2. Base Duty Cycle (Lift Only) is the Duty Cycle required to hold the booms level/stationary. Changing this value does not effect the equivalent value for AutoBoom.
- 3. Min and Max values set the maximum and minimum duty cycle that will be applied to the specified joint when the system is AutoFolding In or Out. The Min/Max values do not affect manual folding operations.

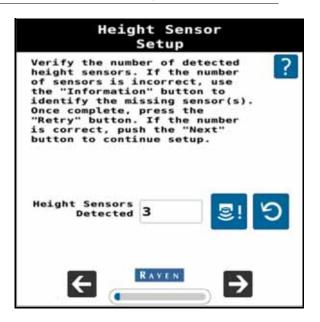

NOTE: These settings are only available for boom joints that have proportional hydraulic cartridges.

ABM-Setup			
C B	1 6	€	
Machine S	ettin	gs	?
Fold Tunin	9		
Lift =			
	TD		
	In	Out	
Fold Sensitivity	50	50	
Base	Duty ycle 3	2.00	
11.000 00.000 00.000	Min	Max	
Retract	0	100	
Extend	_		-

FIGURE 14. Preset Configuration

CALIBRATIONS

FIGURE 15. Calibrations



AUTO-INDEX OF HEIGHT SENSORS

The Auto-Index of Height Sensors calibration allows the user to verify the number of height sensors and update the location of the sensors. The user will be prompted to raise the left and right booms. By observing which sensors had the greatest increase in height at each step, the system learns which sensor is at each location on the boom.

- 1. Verify the number of height sensors detected matches the number installed on the machine.
- 2. If all sensors are detected, touch the Next button to continue.

FIGURE 16. Height Sensor Setup - Sensor Indexing

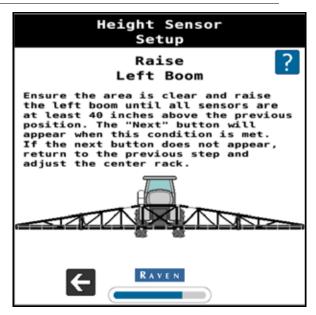

- 3. Unfold the boom and set the booms to level and less than 8 ft. [2.4 m] above ground.
- 4. When both booms are unfolded and level, touch the Next button to continue.

FIGURE 17. Height Sensor Setup - Set Booms Parallel

Height Sensor Setup	
Set Booms Parallel	?
Ensure the area is clear and move the booms to a parallel position. Once complete, press the "Next" button to continue setup.	
*Set booms under 8 (ft)	

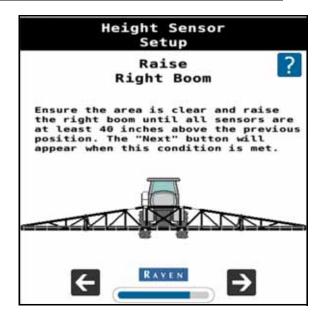

- 5. Raise the left boom.
- 6. When all sensors on the left boom have been raised above 8 ft. [2.4 m], the Next button will be displayed. Touch the Next button to continue.

FIGURE 18. Height Sensor Setup - Raise Left Boom

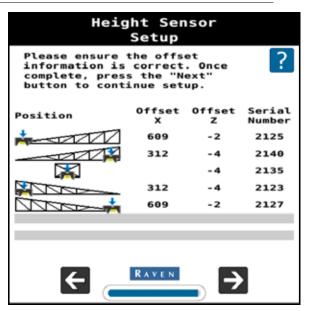

- 7. Raise the right boom.
- 8. When all sensors on the right boom have been raised above 8 ft. [2.4 m], the Next button will be displayed. Touch the Next button to continue.

FIGURE 19. Height Sensor Setup - Raise Right Boom

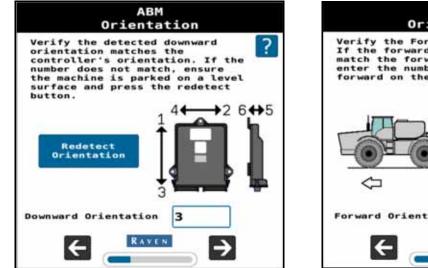
9. The location and offsets for each sensor are displayed on a summary page. This completes the calibration.

FIGURE 20. Height Sensor Setup - Summary Page Display

BASE CONTROL EFFORT CALIBRATION

Press the Base Control Effort Calibration button to recalibrate the pressure required to hold the booms level and stationary. This will update the Duty Cycle required to keep the booms level.

FIGURE 21. Base Control Effort Calibration


- 1. Ensure the area around the machine is clear of bystanders and obstacles. The booms will move up and down during this procedure.
- 2. Unfold the booms fully and set the left and right booms level. The booms must be within 5° of level to proceed with calibration.
- 3. Toggle the master switch to the on position.
- 4. Touch the Next button. Note that the booms will begin raising and lowering while this calibration is performed.
- 5. When calibration is complete, the new values will be displayed.

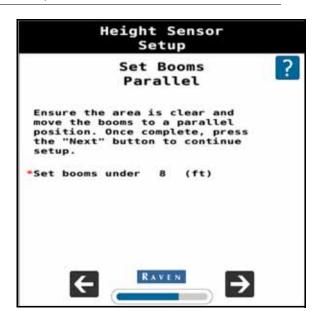
TERRAIN COMPENSATION CALIBRATION

The Terrain Compensation Calibration button allows the user to verify or update the ECU orientation and recalibrate the ABM inertial sensors.

The machine needs to be parked on a level surface prior to performing this calibration.

FIGURE 22. AutoBoom Node Orientation

Orientation If the forward number does not match the forward direction, enter the number pointing forward on the ECU. Image: the forward of the forward direction, enter the number pointing forward on the ECU. Image: the for


ABM

BOOM ANGLE CALIBRATION (LEFT AND RIGHT)

The Boom Angle Calibration button allows the user to recalibrate the boom tilt sensors. This correlates the tilt sensor measurement to an angular boom position.

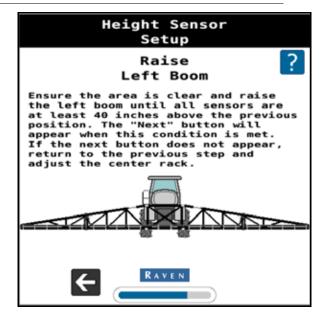

- 1. Set the booms parallel and under 8 ft. [2.4 m] from the ground.
- 2. Press Next.

FIGURE 23. Height Sensor Setup - Set Booms Parallel

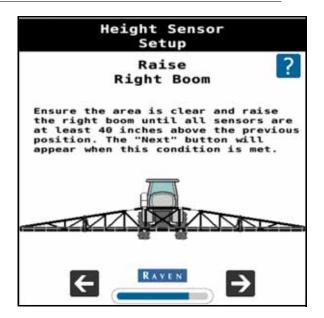
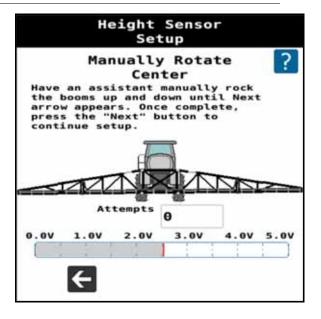

- 3. Raise the left boom until there is at least a 40 in. [101.6 cm] change in height.
- 4. Press Next.

FIGURE 24. Height Sensor Setup - Raise Left Boom

- 5. Raise the right boom until there is at least a 40 in. [101.6 cm] change in height.
- 6. Press Next.

FIGURE 25. Height Sensor Setup - Raise Right Boom

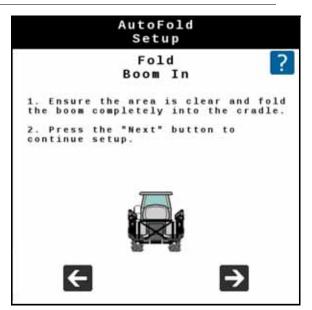


7. Lower and level the booms.

8. Have an assistant manually rock the boom up and down until the Next arrow appears. The Next arrow will only appear when the voltage is more than 0.25 V apart.

NOTE: If an IMU is present, the center angle icon will be used to calibrate the IMU.

FIGURE 26. Center Rack Rotation



AUTOFOLD CALIBRATION

AutoFold Calibration recalibrates the sensors used for performing automatic folding and fore/aft operations. This should be performed if sensors have been adjusted/replaced, or if AutoFold is not completing an AutoFold IN or AutoFold OUT sequence.

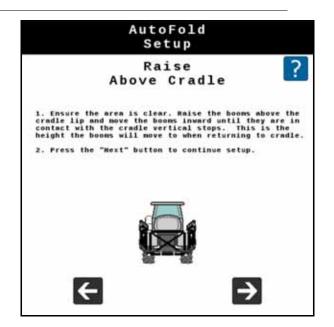
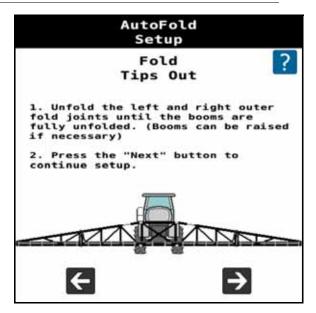

1. Fold the boom and lower the booms completely into the cradle.

FIGURE 27. Set Folded Position

2. Raise the booms above the cradle lips and inward to contact the vertical stops. The Booms will control to the set-point when cradling.

3. Unfold the left and right *inner* joints fully. Leave the outer joints folded. Tilt the booms down to the fullest travel extent.


FIGURE 29. Minimum Height

4. Unfold the left and right outer joints fully.

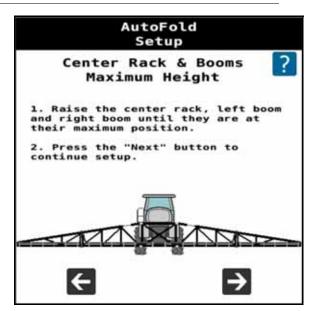

NOTE: The booms may be raised up to complete this step.

FIGURE 30. Fold Tips Out

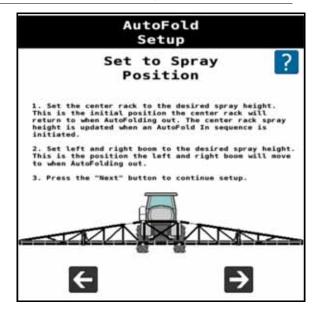
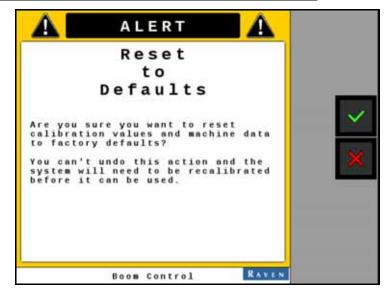

5. Raise the center rack to the maximum height and tilt the booms up to the full travel extent.

FIGURE 31. Raise Center Rack and Booms

6. Move the booms and center rack to the desired spray position. This is the position the boom will move to when AutoFolding out. Note that the center rack height will be relearned each time an AutoFold in operation is performed. Left and Right tilt will not be relearned.

FIGURE 32. Set Booms and Center Rack to Spray Position

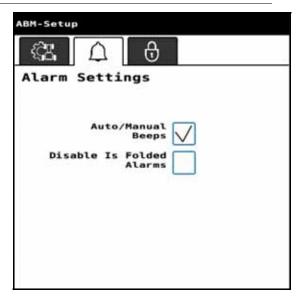
RESET TO DEFAULTS


Selecting Reset to Defaults allows the user to reset AutoBoom XRT to factory default settings.

To reset defaults:

1. Press the Reset to Defaults button in the Calibrations screen.

FIGURE 33. Reset to Defaults



NOTE: Unlocks will not be erased during the reset.

ALARM SETTINGS

The Alarm Settings tab provides the option to sound audible beeps from the display when AutoBoom transitions from Auto mode to Manual and Manual mode to Auto.

FIGURE 34. Alarm Settings

FEATURE UNLOCK CODES

The Unlocks tab displays a green padlock next to features that are already unlocked. A red padlock is displayed next to features that are not unlocked.

A feature unlock code is required to activate additional AutoBoom XRT features. Contact your local Raven dealer to purchase feature unlock codes.

ABM - AutoBoom	XRT Main		ABM-Setup	
AutoBoom	50	Target Height		2
AutoFold	- +	- +	¢ ⁰ Feature Unlocks	
Fore/Aft	:~~ 💷	1	Features AutoBoom	Status
Left	Center	Right	AutoBoom AutoFold	6
AM	M	AM	ilii Fore/Aft	<u>ه</u>
ATT		(AM)	i di cyare	
(em)				
142	107	74		

To enter a feature unlock code and enable a feature:

- 1. Select Settings on the XRT home screen.
- 2. Select the Unlocks tab.
- 3. Select the padlock icon next to the feature to be unlocked.
- 4. Enter the feature unlock code.

NOTE: Dashes may be omitted, letters may be entered in either upper or lower case.

- 5. Touch the checkbox to submit the entered code.
- NOTE: A message will display indicating whether or not the unlock code that was entered is valid. If the code is valid, the padlock icon next to the feature will turn green and indicate that it is unlocked as shown in Figure 35 on page 41.

After unlocking a feature, a calibration is required before any XRT function can be used.

PREPARATION

SENSOR DIMENSIONS

Verify the system dimensions are entered correctly for height sensor offsets and center rack width.

BOOM ANGLE SENSOR

Ensure the automated calibration sequence is performed over flat ground. If the sensor dimensions were updated, re-perform the boom angle sensor calibration.

HYDRAULIC OIL

For best results, perform tuning with the hydraulic oil at normal operating temperature.

BASE CONTROL EFFORT CALIBRATION

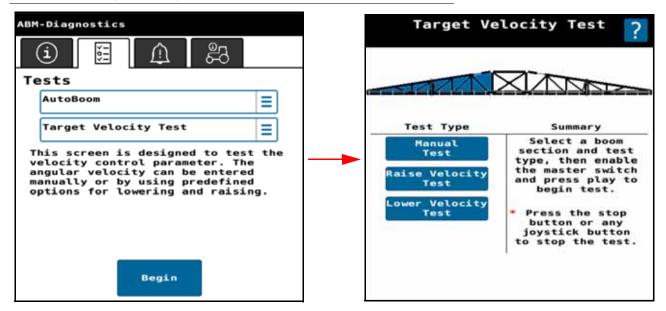
Accurate base control effort values are necessary for successful advanced tuning. Only perform a Base Control Effort Calibration after warming the hydraulic oil. If possible, engage AutoBoom and drive slowly for two minutes prior to performing Base Control Effort calibration. This will ensure the Solenoid coils are at operating temperature and will give the most accurate Base Control Effort.

TARGET CONTROL EFFORT TEST

- 1. Select Diagnostics.
- 2. Select Tests.
- 3. Select Target Control Effort Test.

FIGURE 1. Target Control Effort Test

ABM-Diagnostics	Target Control Effort ? Test
Tests	
Target Control Effort Test	Manual Test Test Results Control Effort (%) 40 Average velocity (deg/s) -0.11 Current (deg) -0.48 (deg/s) Current velocity (deg/s) 0.19 Duty (s) 0
Begin	


- 4. Press Begin Test.
- 5. If the boom moves up or down, Adjust Control Effort accordingly to result in no or very slow boom movement.
- 6. Repeat step 1 through step 5 until the desired results are achieved.
- NOTE: Control effort must be performed on each side of the boom by selecting or highlighting each boom on screen.

BOOM SPEED TO CONTROL EFFORT SCALE

The boom speed to control effort scale value correlates the required PWM duty cycle to the hydraulic valve to create the desired boom speed. To determine the boom speed to control effort scale:

- 1. Select Diagnostics.
- 2. Select Tests.
- 3. Select Target Velocity Test.

FIGURE 2. Target Velocity Test

- 4. Press Begin Test.
- 5. Set the Target Velocity to 2° per second.
- 6. Raise the center rack with one boom lowered near the ground (but at least 24" above the ground).
- 7. Press Start Test. The boom should raise. When the test is complete, the average velocity will display.
- 8. Press the Settings (small gear) on the tab.

9. If the boom moved faster than the desired 2° per second, decrease the Boom Speed to control effort value. If the boom moved slower than the desired 2° per second, increase the Boom Speed to control effort value.

Target Velocity Test Target Velocity Test ? ? **Raise Velocity Test Results** Raise Velocity Velocity to Ctrl Target Average Locity 2.00 0.020 2.01 Velocity (deg/s) (deg/s) Effort Error 0.01 Current Locity 0.00 Control 34.98 Effort (deg/s) (deg/s) (N) Angle 11.22 to Ctrl 0.020 Down 0.700 Effort Speed (deg) Cycle 0 Ratio (5) 5

FIGURE 3. Target Velocity Test Results

10. Repeat step 3 through step 9 until the speed matches the target velocity (+/- 20%).

11. Repeat step 3 through step 10 for the other boom.

NOTE: Test results are affected by solenoid coil temperature. Perform the tests three or more times in rapid succession for best results.

DOWN SPEED RATIO

Because of different flow restrictions and the affect of gravity, booms generally lower faster than the raise for the same change in control effort. Down speed ratio accounts for this difference.

- 1. Select Diagnostics.
- 2. Select Tests.
- 3. Select Target Velocity Test.

FIGURE 4. Target Velocity Test

ests AutoBoom	Ξ
Target Velocity Test	Ξ
his screen is designed to te	st th
his screen is designed to te elocity control parameter. T ingular velocity can be enter anually or by using predefin ptions for lowering and rais	he ed ed

- 4. Press Begin Test.
- 5. Set the Target Velocity to -2° per second.
- 6. Raise the center rack and tilt one boom so the boom is approximately 5° above horizontal.
- 7. Press Start Test. The boom should lower. When the test is complete, the average velocity will display.
- 8. Press the Settings (small gear) on the tab.
- 9. If the boom moved faster than the desired 2° per second, decrease the Down Speed Ratio. If the boom moved slower than the desired 2° per second, increase the Down Speed Ratio value.

FIGURE 5. Down Speed Ratio Test Results

Tar	get Ve	locity	Test	?
				~
Lower V	elocity			
Target Velocity (deg/s)	-2.00			
Current Velocity (deg/s)	0.00			
Current Angle (deg)	-0.19			
Cycle	0			
(č)	٦	7.7		

10. Repeat step 3 through step 9 until the speed matches the target velocity (+/- 20%).

11. Repeat step 3 through step 10 for the other boom.

NOTE: Test results are affected by coil temperature. Perform the tests three or more times in rapid succession for best results.

At this point most machines should be performing optimally. If further tuning is necessary, continue through these additional steps. Test the machine performance in the field before adjusting Boom Gains.

BOOM GAINS

After verifying all of the previous configuration steps and Boom Speed tuning is complete, the following values may be adjusted by going to Machine Settings and then Boom Tuning.

PROPORTIONAL GAIN

Larger proportional gain (P-Gain) values result in higher velocity for the same error in height. Typical values are 1.0 - 1.8. Too high of value will make the boom twitchy or unstable. Too low of a value and the boom will not move quickly enough to changes in ground/crop height.

INTEGRAL GAIN

Integral Gain (I-Gain) compensates for changes in Base control effort over time. This could be caused by oil temperature, valve coil temperature, boom weight, or other system changes. This is generally set between 0.001 and 0.003. To disable this feature, set the value to 0.000.

DERIVATIVE GAIN

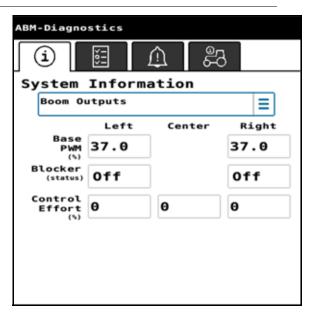
Derivative Gain (D-Gain) prevents overshoot when moving the boom from one target position to another. If D-Gain is too low the boom will overshoot the target position. A D-Gain that is too high may cause a ratcheting (stop and go) effect until the target position is reached.

SYSTEM GAIN

System Gain (S-Gain) makes the complete system more or less responsive. This is equivalent to the Sensitivity value on the *XRT Home* screen.

SYSTEM INFORMATION

To access the System Information window:



- 1. Select the Diagnostics icon.
- 2. Select the System Information tab.

BOOM OUTPUTS

The Boom Outputs window displays the Base PWM (%), Blocker (status), and Control Effort (%).

FIGURE 1. Boom Outputs

FOLD OUTPUTS

The Fold Outputs window displays Control Effort (%) for each joint on the boom.

FIGURE 2.	Fold Outputs
-----------	--------------

BOOM READINGS

The *Boom Readings* window displays the boom position, velocity, and the Sensor Voltage of the selected boom. Press the desired boom or center rack boom to view the information for that section. Voltage and angular position should change smoothly through the range of movement. Angular Position should be close to zero when the boom section is horizontal.

FIGURE 3. Boom Readings

i	ŝ	23	
System Inform	ation		
Boom Readings		=	
			_
			Ŧ
Angular Positior (deg	7.50		1
Position	0.00		

CAN BUS INFORMATION

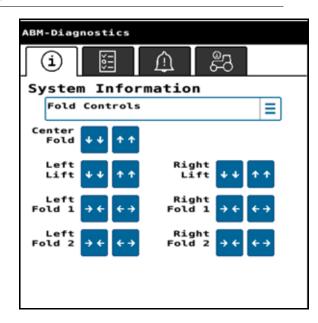

The CAN Bus Information window displays information about CAN system.

FIGURE 4. CAN Bus Information

í	1 <u>A</u> #3	
System I	nformation	
CAN Bus	Information	
	Name	CAN Address
AutoBoom Master	200C870012E10528	0x90
ehicle I/O Expansion Module	200C84000BC00000	0x9D
Speed Source	A0001D000BCDBDD0	0x80
Source T	ype Wheel	23

FOLD CONTROLS

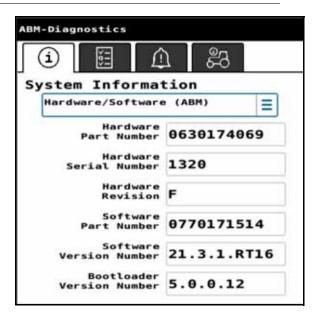
FIGURE 5. Fold Controls

Manually control each section of the boom.

NOTE: Depending upon your machine's configuration, not all sections may be available to control on this page and some displayed sections may not be controlled via the displayed buttons.

FOLD SENSOR READINGS

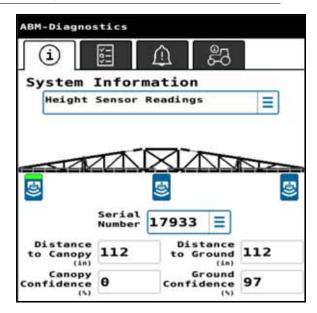
Displays the voltage reading for each fold joint. If AutoFold is unlocked a percent position is also displayed. 0% is fully folded and 100% is fully unfolded.


FIGURE 6. Fold Sensor Readings

ABM-Diagnostic	s					
í	Ê	57 73				
System Information						
Fold Senso	r Readings		≡			
	KX)					
	Voltage	Per	cent			
Lift Sensor	3.04	27				
Fold 1 Sensor	1.21	100				
Fold 2 Sensor	1.31	100				

HARDWARE/SOFTWARE (ABM)

The Hardware/Software (ABM) window displays the AutoBoom hardware and software number and versions.


FIGURE 7. Hardware/Software (ABM)

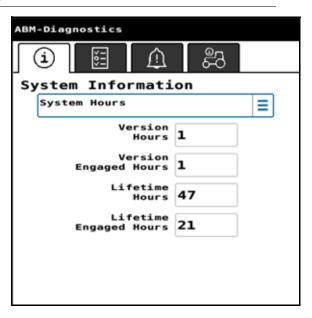
HEIGHT SENSOR READINGS

The *Height Sensor Reading* window displays the sensor Serial Number, Distance to Canopy, Distance to Ground, Canopy Confidence, and Ground Confidence percentages for the selected sensor.

FIGURE 8. Height Sensor Reading

MACHINE READINGS

The *Machine Readings* window displays the current machine Speed, Chassis Roll Position, Chassis Pitch Position, and Chassis Roll Rate.


FIGURE 9. Machine Readings

1 🗄 🗋	ස්
stem Informati	on
Machine Readings	=
Speed (mph)	0.0
Chassis Roll Position (deg)	0.0
Chassis Pitch Position (deg)	0.0
Chassis Roll Rate (deg)	θ.θ

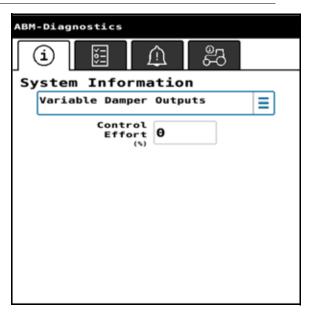
SYSTEM HOURS

The *System Hours* window displays the current Version Hours, Version Engaged Hours, Lifetime Hours, Lifetime Engaged Hours.

FIGURE 10. Sys	stem Hours
----------------	------------

SYSTEM VOLTAGES

The System Voltages window displays the ECU Power and the Regulator voltages.


FIGURE 11. System Voltages

(i)	E L) ^e	5
ystem	Informa	tion	
System	Voltages		Ξ
-	UCM1 Vo	ltages	
	UCM1 Power (V)	13.94	
	Regulator A 5V	5.0]
	Regulator B 5V (V)	5.0	
	Regulator C 5V	5.0	
	Regulator D 8.5V	8.5	7

VARIABLE DAMPER OUTPUTS

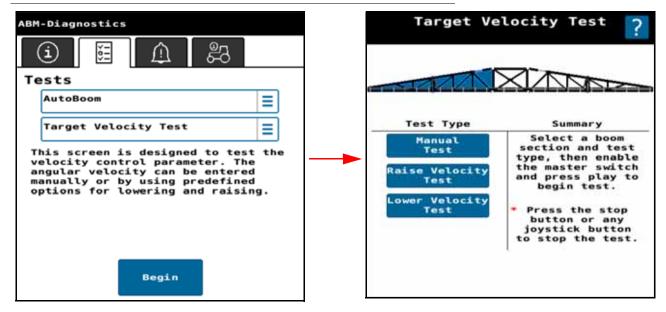
The Variable Damper Outputs window displays the Control Effort for the variable damper.

FIGURE 12. Variable Damper Outputs

TESTS

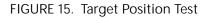
TARGET CONTROL EFFORT TEST

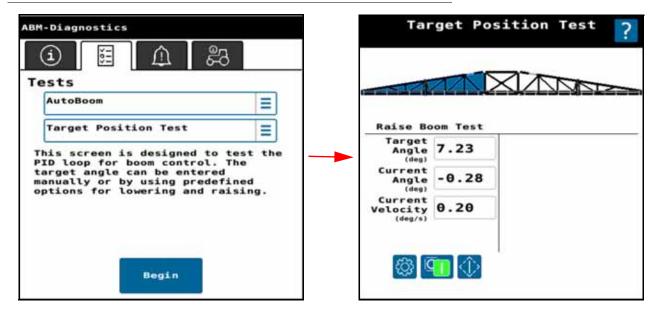
The Target Control Effort Test tests boom function with a static control effort. Entering a Control Effort value equal to the Base Duty Cycle should result in no, or very slow boom movement. Higher values will cause the boom to raise and lower values will cause the boom to go down.


FIGURE 13. Target Control Effort Test

ABM-Diagnostics			trol Effort <mark>?</mark>
Tests			
Target Control Effort Test This screen is designed to test boom function with a static con effort. The control effort can be entered manually or by using predefined options for lowering raising.	trol be	Manual Test Control Effort (%) Current Angle (deg) Current Velocity (deg/s) Duty Cycle 0	Test Results Average Velocity (deg/s)
Begin			2

TARGET VELOCITY TEST


The Target Velocity Test tests the velocity control parameter by either manually entering the angular velocity or by using predefined options. Tests are generally performed at +/-2° per second. Before starting the test, manually move the boom to a position where it can travel up (or down) for five seconds. After running the tests an Average Velocity will display. This should be within 20% of the Target Velocity. If additional adjustments are required, refer to "AutoBoom XRT Advanced Tuning" on page 43.


FIGURE 14. Target Velocity Test

TARGET POSITION TEST

This test is designed to test the boom control PID loop. Enter a target position several degrees away from the current position in the Target Angle field. After running the test, various values will be reported. These values represent how quickly the boom moved to the target position. Ideally, the Delay, Rise, Settling, and Overshoot values are low.

TARGET HEIGHT TEST

This test is similar to the Target Position Test but incorporates all of the sensors on the machine to control the ground height.

FIGURE 16. Target Height Test

TERRAIN COMPENSATION TEST

The Terrain Compensation Test analyzes data from the inertial sensors in the XRT ABM ECU.

At the start of the test, the user is asked to have the engine idling at low speed. Next the user is asked to run the engine at typical operating RPM. The test reports a pass or fail for each engine speed. If the test fails, engine vibrations may be having a negative impact on system performance.

NOTE: If the test fails, check the node installation. Verify the node is mounted securely and has not come lose during operation. Also confirm that the node is mounted as instructed in the AutoBoom XRT machine specific installation manual.

The AutoBoom XRT system will still operate if the test fails, however, terrain compensation features may not offer optimal boom height adjustments for all terrain features.

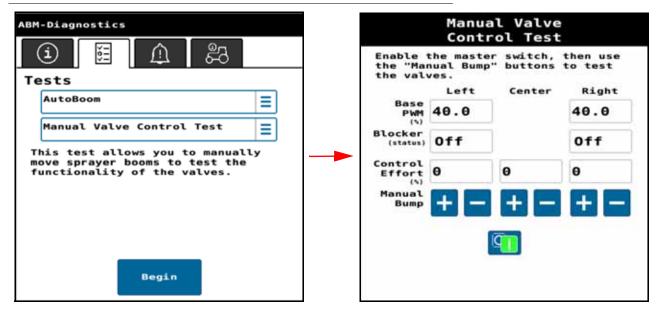

ABM-Diagnostics	Terrain Compensation Test
① ☑ ☑ ♣3 Tests	Please review the terrain compensation test results (passed/failed). Once complete, press the back button to return to
AutoBoom	the Diagnostic Tests screen. Low High Idle Test VIdle Test
This screen is designed to test terrain compensation by alternating between low engine idle and full	INU Low INU High Idle Test Idle Test Low Idle High Idle
engine throttle. Please follow the directions on screen after clicking "Begin".	Deviation (deg/s) IMU Standard Deviation (deg/s) 0.04 0.03
Begin	Pass Criteria (deg/s) 0.25 →

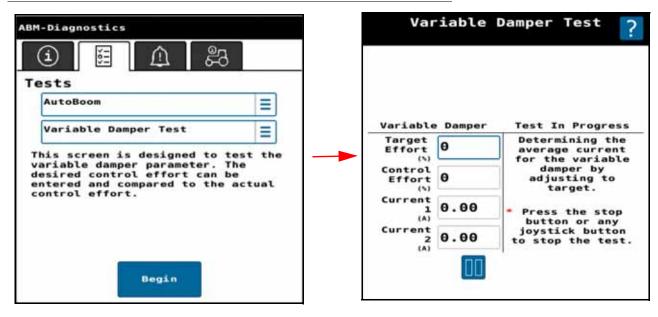
FIGURE 17. Terrain Compensation Test

MANUAL VALVE CONTROL TEST

The Manual Valve Control test allows the user to manually move the sprayer booms to validate hydraulic valve function.

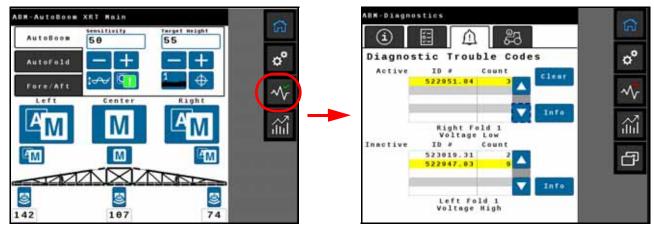
FIGURE 18. Manual Valve Control Test

VARIABLE DAMPER TEST


The Variable Damper test allows the user to manually apply a control effort to the variable damper system.

- 1. Select Connectivity Test.
- 2. Enter a Target Effort Percentage.
- 3. Touch the Start button.

NOTE: Variable Dampers are optional. Test is only valid if equipped.


Each damper should draw between 2.0 and 2.8 amps when tested at 100%.

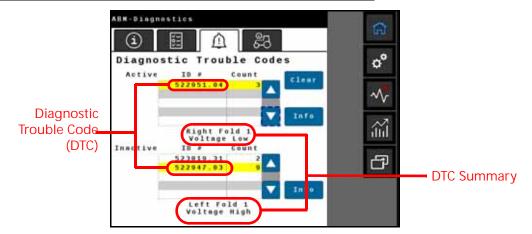

DIAGNOSTIC TROUBLE CODES (DTCS)

FIGURE 20. Diagnostic Trouble Codes Screen

The Diagnostic Trouble Code screen displays active and previous diagnostic trouble codes (DTCs) that occur during XRT system operation. Active DTCs must be fixed before the XRT system can be enabled for operation. Once a DTC has been corrected, the code moves to the inactive DTC code list.

FIGURE 21. Diagnostic Trouble Codes Screen

NOTE: In Figure 21 on page 59 above, the active DTC is "522951.04" and the DTC summary is "Right Fold 1 Voltage Low." The inactive DTC is 522947.03 and the DTC summary is "Left Fold 1 Voltage High."

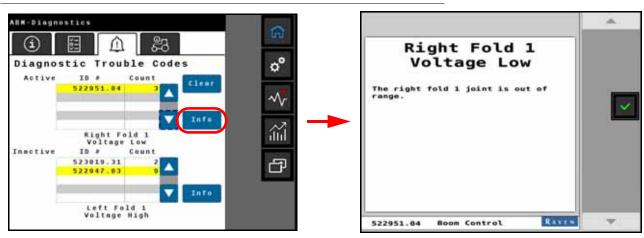
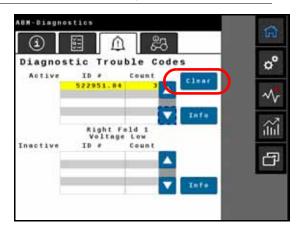



FIGURE 22. Info Screen

Pressing the Info button displays the complete description of the highlighted active DTC.

FIGURE 23. Inactive DTCs Cleared from Error Log

Pressing Clear deletes the inactive DTCs from the Inactive DTC error log.

DTC LIST

TABLE 1. Trouble Code Reference Table

		1	1
Error	Error Code	Error	Error Code
REM OFFLINE ABM SUBNET BUS	522945.0	ABM ECU POWER VOLTAGE HIGH	520192.3
REM INVALID POOL	522945.13	ABM ECU POWER VOLTAGE LOW	520192.4
REM COMMUNICATING ON ISO BUS	522945.15	ABM HIGH CURRENT POWER VOLTAGE HIGH	520194.3
REM OFFLINE ISO BUS	522945.16	ABM HIGH CURRENT POWER VOLTAGE LOW	520194.4
LEFT LIFT POSITION VOLTAGE LOW	522946.4	ABM LOSS OF COMMUNICATION ON ABM XRT CANBUS	520457.31
LEFT LIFT POSITION VOLTAGE HIGH	522946.3	ABM LOSS OF COMMUNICATION WITH REM	522945.31
LEFT FOLD 1 POSITION VOLTAGE LOW	522947.4	LEFT FOLD 3 IN SOLENOID CURRENT LOW	522922.5
LEFT FOLD 1 POSITION VOLTAGE HIGH	522947.3	RIGHT FOLD 3 IN SOLENOID CURRENT LOW	522923.5
LEFT FOLD 2 POSITION VOLTAGE LOW	522948.4	LEFT FOLD 2 IN SOLENOID CURRENT LOW	522924.5
LEFT FOLD 2 POSITION VOLTAGE HIGH	522948.3	RIGHT FOLD 2 IN SOLENOID CURRENT LOW	522925.5
LEFT FOLD 3 POSITION VOLTAGE LOW	522949.4	LEFT FOLD 1 IN SOLENOID CURRENT LOW	522926.5
LEFT FOLD 3 POSITION VOLTAGE HIGH	522949.3	RIGHT FOLD 1 IN SOLENOID CURRENT LOW	522927.5
RIGHT LIFT POSITION VOLTAGE LOW	522950.4	LEFT FOLD 3 OUT SOLENOID CURRENT LOW	522928.5

TABLE 1. Trouble Code Reference Table

Error	Error Code
RIGHT LIFT POSITION VOLTAGE HIGH	522950.3
RIGHT FOLD 1 POSITION VOLTAGE	522951.4
RIGHT FOLD 1 POSITION VOLTAGE HIGH	522951.3
RIGHT FOLD 2 POSITION VOLTAGE	522952.4
RIGHT FOLD 2 POSITION VOLTAGE HIGH	522952.3
RIGHT FOLD 3 POSITION VOLTAGE HIGH	522953.4
RIGHT FOLD 3 POSITION VOLTAGE	522953.3
CENTER ANGULAR POSITION VOLTAGE LOW	522954.4
CENTER ANGULAR POSITION VOLTAGE HIGH	522954.3
CENTER LIFT POSITION VOLTAGE LOW	522955.4
CENTER LIFT POSITION VOLTAGE HIGH	522955.3
LEFT OUTER HEIGHT SENSOR OFFLINE	522956.31
LEFT OUTER HEIGHT SENSOR NEEDS UPDATE	522956.1
LEFT INNER HEIGHT SENSOR OFFLINE	522957.31
LEFT INNER HEIGHT SENSOR NEEDS UPDATE	522957.1
LEFT MID HEIGHT SENSOR OFFLINE	522958.31
LEFT MID HEIGHT SENSOR NEEDS UPDATE	522958.1
CENTER HEIGHT SENSOR OFFLINE	522959.31
CENTER HEIGHT SENSOR NEEDS UPDATE	522959.1
RIGHT OUTER HEIGHT SENSOR OFFLINE	522960.31
RIGHT OUTER HEIGHT SENSOR NEEDS UPDATE	522960.1
RIGHT INNER HEIGHT SENSOR OFFLINE	522961.31

Error	Error Code
RIGHT FOLD 3 OUT SOLENOID CURRENT LOW	522929.5
LEFT FOLD 2 OUT SOLENOID CURRENT LOW	522930.5
RIGHT FOLD 2 OUT SOLENOID CURRENT LOW	522931.5
LEFT FOLD 1 OUT SOLENOID CURRENT LOW	522932.5
RIGHT FOLD 1 OUT SOLENOID CURRENT LOW	522933.5
LEFT BLOCKER SOLENOID CURRENT LOW	522934.5
LEFT PROPORTIONAL SOLENOID CURRENT LOW	522935.5
RIGHT BLOCKER SOLENOID CURRENT LOW	522936.5
RIGHT POPORTIONAL SOLENOID CURRENT LOW	522937.5
BOOM CRADLE LOCK SOLENOID CURRENT LOW	522938.5
CENTER RACK RAISE SOLENOID CURRENT LOW	522939.5
CENTER RACK LOWER SOLENOID CURRENT LOW	522940.5
DAMPER 1 DRIVER CURRENT LOW	520168.5
DAMPER 2 DRIVER CURRENT LOW	520169.5
LEFT STABILIZING SOLENOID CURRENT LOW	520303.5
RIGHT STABILIZING SOLENOID CURRENT LOW	520302.5
LEFT LIFT UP SOLENOID CURRENT LOW	522918.5
RIGHT LIFT UP SOLENOID CURRENT LOW	522919.5
LEFT LIFT DOWN SOLENOID CURRENT LOW	522920.5
RIGHT LIFT DOWN SOLENOID CURRENT LOW	522921.5
LEFT FOLD 3 IN SOLENOID CURRENT HIGH	522922.6
RIGHT FOLD 3 IN SOLENOID CURRENT HIGH	522923.6

TABLE 1. Trouble Code Reference Table

Error	Error Code
RIGHT INNER HEIGHT SENSOR NEEDS UPDATE	522961.1
RIGHT MID HEIGHT SENSOR OFFLINE	522962.31
RIGHT MID HEIGHT SENSOR NEEDS UPDATE	522962.1
INERTIAL MEASUREMENT UNIT OFFLINE	522963.0
INERTIAL MEASUREMENT UNIT NOT RATE TABLE CALIBRATED	52963.1
INVALID ABM ORIENTATION	522964.0
INVALID IMU ORIENTATION	522965.0
ERROR NOT RATE TABLE CALIBRATED	0.0
BOOM OFFLINE	0.0
LEFT LIFT UP DOWN PRESSED	0.0
LEFT FOLD 1 IN OUT PRESSED	0.0
LEFT FOLD 2 IN OUT PRESSED	0.0
LEFT FOLD 3 IN OUT PRESSED	0.0
RIGHT LIFT UP DOWN PRESSED	0.0
RIGHT FOLD 1 IN OUT PRESSED	0.0
RIGHT FOLD 2 IN OUT PRESSED	0.0
RIGHT FOLD 3 IN OUT PRESSED	0.0
CENTER UP DOWN PRESSED	0.0
AUTOFOLD IN OUT PRESSED	0.0
NO SPEED	0.0
IS RIGID CENTER RACK TOO HIGH	0.0
ISO AUTOFOLD NEEDS UPDATE	0.0
BOOMS ARE FOLDED	0.0

Error	Error Code
LEFT FOLD 2 IN SOLENOID CURRENT HIGH	522924.6
RIGHT FOLD 2 IN SOLENOID CURRENT HIGH	522925.6
LEFT FOLD 1 IN SOLENOID CURRENT HIGH	522926.6
RIGHT FOLD 1 IN SOLENOID CURRENT HIGH	522927.6
LEFT FOLD 3 OUT SOLENOID CURRENT HIGH	522928.6
RIGHT FOLD 3 OUT SOLENOID CURRENT HIGH	522929.6
LEFT FOLD 2 OUT SOLENOID CURRENT HIGH	522930.6
RIGHT FOLD 2 OUT SOLENOID CURRENT HIGH	522931.6
LEFT FOLD 1 OUT SOLENOID CURRENT HIGH	522932.6
RIGHT FOLD 1 OUT SOLENOID CURRENT HIGH	522933.6
LEFT BLOCKER SOLENOID CURRENT HIGH	522934.6
LEFT PROPORTIONAL SOLENOID CURRENT HIGH	522935.6
RIGHT BLOCKER SOLENOID CURRENT HIGH	522936.6
RIGHT PROPORTIONAL SOLENOID CURRENT HIGH	522937.6
BOOM CRADLE LOCK SOLENOID CURRENT HIGH	522938.6
CENTER RACK RAISE SOLENOID CURRENT HIGH	522939.6
CENTER RACK LOWER SOLENOID CURRENT HIGH	522940.6
DAMPER 1 DRIVER CURRENT HIGH	520168.6
DAMPER 2 DRIVER CURRENT HIGH	520169.6
LEFT STABILIZING SOLENOID CURRENT HIGH	520303.6
RIGHT STABILIZING SOLENOID CURRENT HIGH	520302.6
LEFT LIFT UP SOLENOID CURRENT HIGH	522918.6
RIGHT LIFT UP SOLENOID CURRENT HIGH	522919.6

TABLE 1. Trouble Code Reference Table

Error	Error Code	Error	Error Code
HEIGHT SENSOR ZERO OFFSET	0.0	LEFT LIFT DOWN SOLENOID CURRENT HIGH	522920.6
IMU NOT CALIBRATED	522963.13	RIGHT LIFT DOWN SOLENOID CURRENT HIGH	522921.6
ABM LOSS OF COMMUNICATION WITH IMU	522963.31	IMU INVALID ORIENTATION DETECTED	522965.31
INVALID ABM ORIENTATION DETECTED	522964.31	ABM LOSS OF COMMUNICATION WITH UT	524082.31

RADAR LED CODES

FIGURE 24. Raven Height Sensor LED

TABLE 2. Radar LED Colors

LED Status	LED Color
Sensor is in bootloader mode	Flashing Red at 10 Hz
Sensor is reprogramming	Flashing Red at 1 Hz
No CAN Communication	Flashing Yellow at 10 Hz
CAN Communication but no ABM detected	Flashing Yellow at 1 Hz
ABM detected, but not indexed	Flashing Pink at 1 Hz
Sensor has been indexed	Flashing Green at 1 Hz
Boom with sensor is enabled	Flashing Blue at 1 Hz

REM LED CODES

TABLE 3. REM Node LED Status

LED	Color	Hz	Status Name	Description
Power	Green	Solid	ECU Powered	Active when ECU has high current power.
А	Off	Solid	Microprocessor Off	Active when the microprocessor is not powered.
A	Red	1	ISOBUS Offline	Active if the ISOBUS is offline.
A	White	1	ISOBUS Online	Active if the ISOBUS is online.
A	Green	1	Systems Normal	Active when linked with VT and system is normal.
В	Red	1	ECU Power Loss	System has lost Logic power, but not high current power.
В	Off	Solid	ECU Has Power	System has logic power and high current power.
С	Red	Solid	FPGA Not Running	PCB subsystem not running (FPGA).
С	Green	Solid	LED C Functional - No Error	LED C is functional and there are no other LED C states to report.

SYSTEM SUMMARY

The System Summary window displays the machine configuration information.

FIGURE 25. System Summary

(i)	Ê	83	
stem Summa	ry	-	
Machine	Config	uration	
100ft Booms			
Mac	hine Ma	ke	
Case IH			
Mac	hine Mo	del	
MY22+ Patriot	3250		
eight Sensors Detected	3		
Center Rack Width	122		

TOTALS

The Totals icon on the right side of the run screen allows the user to view short-term performance.

ABH-AutoBoom AutoBoom AutoFold Fore/Aft Left	XRT Hein Sensitivity 50 Center Center	Target Height 55 1 0 0 1 0 0 0 0 0 0 0	₹ \$	Totals
E 142		74		

FIGURE 26. Home Screen

The *Short-Term Performance* window displays Deviation of Heights, Average Terrain, Average Error, and Average Speed.

ABM-Performance		ABM-Performance	
X Č			
Short-Term Perf Height Variability (in) Average Terrain Average Error (in)		Resettable Perf Height Variability (in) Average Terrain Average Error (in)	•.•
Average Speed (mph) Report Issue	0.0	Average Speed (mph) Report Issue	

The *Resettable Performance* window shows the same information as the short-term performance tab but allows the user to reset the information.

NOTE: Press the Report Issue button to send out diagnostic information on the ISOBus. You may be asked to do this if working with Tech Support.

LIMITED WARRANTY

WHAT DOES THIS WARRANTY COVER?

This warranty covers all defects in workmanship or materials in your Raven Applied Technology Division product under normal use, maintenance, and service when used for intended purpose.

HOW LONG IS THE COVERAGE PERIOD?

Raven Applied Technology products are covered by this warranty for 12 months from the date of retail sale. In no case will the Limited Warranty period exceed 24 months from the date the product was issued by Raven Industries Applied Technology Division. This warranty coverage applies only to the original owner and is non-transferable.

HOW CAN I GET SERVICE?

Bring the defective part and proof of purchase to your Raven dealer. If the dealer approves the warranty claim, the dealer will process the claim and send it to Raven Industries for final approval. The freight cost to Raven Industries will be the customer's responsibility. The Return Materials Authorization (RMA) number must appear on the box and all documentation (including proof of purchase) must be included inside the box to be sent to Raven Industries.

WHAT WILL RAVEN INDUSTRIES DO?

Upon confirmation of the warranty claim, Raven Industries will (at our discretion) repair or replace the defective product and pay for the standard return freight, regardless of the inbound shipping method. Expedited freight is available at the customer's expense.

WHAT IS NOT COVERED BY THIS WARRANTY?

Raven Industries will not assume any expense or liability for repairs made outside our facilities without written consent. Raven Industries is not responsible for damage to any associated equipment or products and will not be liable for loss of profit, labor, or other damages. The obligation of this warranty is in lieu of all other warranties, expressed or implied, and no person or organization is authorized to assume any liability for Raven Industries.

Damages caused by normal wear and tear, misuse, abuse, neglect, accident, or improper installation and maintenance are not covered by this warranty.

EXTENDED WARRANTY

WHAT DOES THIS WARRANTY COVER?

This warranty covers all defects in workmanship or materials in your Raven Applied Technology Division product under normal use, maintenance, and service when used for intended purpose.

DO I NEED TO REGISTER MY PRODUCT TO QUALIFY FOR THE EXTENDED WARRANTY?

Yes. Products/systems must be registered within 30 days of retail sale to receive coverage under the Extended Warranty. If the component does not have a serial tag, the kit it came in must be registered instead.

WHERE CAN I REGISTER MY PRODUCT FOR THE EXTENDED WARRANTY?

To register, go online to www.ravenhelp.com and select Product Registration.

HOW LONG IS THE EXTENDED WARRANTY COVERAGE PERIOD?

Raven Applied Technology products that have been registered online are covered for an additional 12 months beyond the Limited Warranty for a total coverage period of 24 months from the date of retail sale. In no case will the Extended Warranty period exceed 36 months from the date the product was issued by Raven Industries Applied Technology division. This Extended Warranty coverage applies only to the original owner and is non-transferable.

HOW CAN I GET SERVICE?

Bring the defective part and proof of purchase to your Raven dealer. If the dealer approves the warranty claim, the dealer will process the claim and send it to Raven Industries for final approval. The freight cost to Raven Industries will be the customer's responsibility. The Return Materials Authorization (RMA) number must appear on the box and all documentation (including proof of purchase) must be included inside the box to be sent to Raven Industries. In addition, the words "Extended Warranty" must appear on the box and all documentation if the failure is between 12 and 24 months from the retail sale.

WHAT WILL RAVEN INDUSTRIES DO?

Upon confirmation of the product's registration for the Extended Warranty and the claim itself, Raven Industries will (at our discretion) repair or replace the defective product and pay for the standard return freight, regardless of the inbound shipping method. Expedited freight is available at the customer's expense.

WHAT IS NOT COVERED BY THE EXTENDED WARRANTY?

Raven Industries will not assume any expense or liability for repairs made outside our facilities without written consent. Raven Industries is not responsible for damage to any associated equipment or products and will not be liable for loss of profit, labor, or other damages. Cables, hoses, software enhancements, and remanufactured items are not covered by this Extended Warranty. The obligation of this warranty is in lieu of all other warranties, expressed or implied, and no person or organization is authorized to assume any liability for Raven Industries.

Damages caused by normal wear and tear, misuse, abuse, neglect, accident, or improper installation and maintenance are not covered by this warranty.

